Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.

Identifieur interne : 002073 ( Main/Exploration ); précédent : 002072; suivant : 002074

Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.

Auteurs : Ahmed Najar [Canada] ; Simon M. Landh Usser ; Justin G A. Whitehill ; Pierluigi Bonello ; Nadir Erbilgin

Source :

RBID : pubmed:24363094

Descripteurs français

English descriptors

Abstract

Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios.

DOI: 10.1007/s10886-013-0374-0
PubMed: 24363094


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.</title>
<author>
<name sortKey="Najar, Ahmed" sort="Najar, Ahmed" uniqKey="Najar A" first="Ahmed" last="Najar">Ahmed Najar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landh Usser, Simon M" sort="Landh Usser, Simon M" uniqKey="Landh Usser S" first="Simon M" last="Landh Usser">Simon M. Landh Usser</name>
</author>
<author>
<name sortKey="Whitehill, Justin G A" sort="Whitehill, Justin G A" uniqKey="Whitehill J" first="Justin G A" last="Whitehill">Justin G A. Whitehill</name>
</author>
<author>
<name sortKey="Bonello, Pierluigi" sort="Bonello, Pierluigi" uniqKey="Bonello P" first="Pierluigi" last="Bonello">Pierluigi Bonello</name>
</author>
<author>
<name sortKey="Erbilgin, Nadir" sort="Erbilgin, Nadir" uniqKey="Erbilgin N" first="Nadir" last="Erbilgin">Nadir Erbilgin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24363094</idno>
<idno type="pmid">24363094</idno>
<idno type="doi">10.1007/s10886-013-0374-0</idno>
<idno type="wicri:Area/Main/Corpus">002367</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002367</idno>
<idno type="wicri:Area/Main/Curation">002367</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002367</idno>
<idno type="wicri:Area/Main/Exploration">002367</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.</title>
<author>
<name sortKey="Najar, Ahmed" sort="Najar, Ahmed" uniqKey="Najar A" first="Ahmed" last="Najar">Ahmed Najar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB</wicri:regionArea>
<wicri:noRegion>AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landh Usser, Simon M" sort="Landh Usser, Simon M" uniqKey="Landh Usser S" first="Simon M" last="Landh Usser">Simon M. Landh Usser</name>
</author>
<author>
<name sortKey="Whitehill, Justin G A" sort="Whitehill, Justin G A" uniqKey="Whitehill J" first="Justin G A" last="Whitehill">Justin G A. Whitehill</name>
</author>
<author>
<name sortKey="Bonello, Pierluigi" sort="Bonello, Pierluigi" uniqKey="Bonello P" first="Pierluigi" last="Bonello">Pierluigi Bonello</name>
</author>
<author>
<name sortKey="Erbilgin, Nadir" sort="Erbilgin, Nadir" uniqKey="Erbilgin N" first="Nadir" last="Erbilgin">Nadir Erbilgin</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Herbivory (drug effects)</term>
<term>Nitrogen (metabolism)</term>
<term>Phenol (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Seasons (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Herbivorie (effets des médicaments et des substances chimiques)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Phénol (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Saisons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Phenol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Herbivorie</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Feuilles de plante</term>
<term>Phénol</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Photosynthesis</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métabolisme glucidique</term>
<term>Photosynthèse</term>
<term>Saisons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24363094</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.</ArticleTitle>
<Pagination>
<MedlinePgn>21-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-013-0374-0</ELocationID>
<Abstract>
<AbstractText>Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Najar</LastName>
<ForeName>Ahmed</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Landhäusser</LastName>
<ForeName>Simon M</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whitehill</LastName>
<ForeName>Justin G A</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonello</LastName>
<ForeName>Pierluigi</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Erbilgin</LastName>
<ForeName>Nadir</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>339NCG44TV</RegistryNumber>
<NameOfSubstance UI="D019800">Phenol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019800" MajorTopicYN="N">Phenol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24363094</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-013-0374-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):893-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jun;16(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 Jun;20(6):1281-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Mar;168(3):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21971584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Nov;154(1):129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17724619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Oct;24(10):1129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(3):371-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):353-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Nov;22(15-16):1119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1990 Jul;83(4):458-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Sep;167(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21431939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Oct;73(4):513-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):818-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bonello, Pierluigi" sort="Bonello, Pierluigi" uniqKey="Bonello P" first="Pierluigi" last="Bonello">Pierluigi Bonello</name>
<name sortKey="Erbilgin, Nadir" sort="Erbilgin, Nadir" uniqKey="Erbilgin N" first="Nadir" last="Erbilgin">Nadir Erbilgin</name>
<name sortKey="Landh Usser, Simon M" sort="Landh Usser, Simon M" uniqKey="Landh Usser S" first="Simon M" last="Landh Usser">Simon M. Landh Usser</name>
<name sortKey="Whitehill, Justin G A" sort="Whitehill, Justin G A" uniqKey="Whitehill J" first="Justin G A" last="Whitehill">Justin G A. Whitehill</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Najar, Ahmed" sort="Najar, Ahmed" uniqKey="Najar A" first="Ahmed" last="Najar">Ahmed Najar</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002073 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002073 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24363094
   |texte=   Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24363094" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020